Нанотехнологии – это новое направление науки и технологии, активно развивающееся в последние десятилетия. Нанотехнологии включают создание и использование материалов, устройств и технических систем, функционирование которых определяется наноструктурой, то есть ее упорядоченными фрагментами размером от 1 до 100 нанометров.
Приставка «нано», пришедшая из греческого языка («нанос» по‑гречески ‑ гном), означает одну миллиардную долю. Один нанометр (нм) – одна миллиардная доля метра.
Нанотехнологии и области их применения
Термин «нанотехнология» (nanotechnology) был введен в 1974 году профессором‑материаловедом из Токийского университета Норио Танигучи (Norio Taniguchi), который определил его как «технология производства, позволяющая достигать сверхвысокую точность и ультрамалые размеры …порядка 1 нм …».
В мировой литературе четко отличают нанонауку (nanoscience) от нанотехнологий (nanotechnology). Для нанонауки используется также термин ‑ nanoscale science (наноразмерная наука).
На русском языке и в практике российского законодательства и нормативных документов термин «нанотехнологии» объединяет «нанонауку», «нанотехнологии», и иногда даже «наноиндустрию» (направления бизнеса и производства, где используются нанотехнологии).
Важнейшей составной частью нанотехнологии являются наноматериалы, то есть материалы, необычные функциональные свойства которых определяются упорядоченной структурой их нанофрагментов размером от 1 до 100 нм.
Согласно рекомендации 7‑ой Международной конференции по нанотехнологиям (Висбаден, 2004 г.) выделяют следующие типы наноматериалов:
- нанопористые структуры;
- наночастицы;
- нанотрубки и нановолокна;
- нанодисперсии (коллоиды);
- наноструктурированные поверхности и пленки;
- нанокристаллы и нанокластеры.
Наносистемная техника ‑ полностью или частично созданные на основе наноматериалов и нанотехнологий функционально законченные системы и устройства, характеристики которых кардинальным образом отличаются от показателей систем и устройств аналогичного назначения, созданных по традиционным технологиям.
Области применения нанотехнологий
Перечислить все области, в которых эта глобальная технология может существенно повлиять на технический прогресс, практически невозможно. Можно назвать только некоторые из них:
- элементы наноэлектроники и нанофотоники (полупроводниковые транзисторы и лазеры;
- фотодетекторы; солнечные элементы; различные сенсоры);
- устройства сверхплотной записи информации;
- телекоммуникационные, информационные и вычислительные технологии; суперкомпьютеры;
- видеотехника — плоские экраны, мониторы, видеопроекторы;
- молекулярные электронные устройства, в том числе переключатели и электронные схемы на молекулярном уровне;
- нанолитография и наноимпринтинг;
- топливные элементы и устройства хранения энергии;
- устройства микро‑ и наномеханики, в том числе молекулярные моторы и наномоторы, нанороботы;
- нанохимия и катализ, в том числе управление горением, нанесение покрытий, электрохимия и фармацевтика;
- авиационные, космические и оборонные приложения;
- устройства контроля состояния окружающей среды;
- целевая доставка лекарств и протеинов, биополимеры и заживление биологических тканей, клиническая и медицинская диагностика, создание искусственных мускулов, костей, имплантация живых органов;
- биомеханика; геномика; биоинформатика; биоинструментарий;
- регистрация и идентификация канцерогенных тканей, патогенов и биологически вредных агентов;
- безопасность в сельском хозяйстве и при производстве пищевых продуктов.
Компьютеры и микроэлектроника
Нанокомпьютер — вычислительное устройство на основе электронных (механических, биохимических, квантовых) технологий с размерами логических элементов порядка нескольких нанометров. Сам компьютер, разрабатываемый на основе нанотехнологий, также имеет микроскопические размеры.
ДНК‑компьютер — вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления — это собирательное название для различных техник, так или иначе связанных с ДНК или РНК.
При ДНК‑вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.
Атомно‑силовой микроскоп ‑ сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца.
В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК).
Пространственное разрешение атомно‑силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
Антенна‑осциллятор ‑ 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна‑осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.
Наномедицина и фармацевтическая промышленность
Направление в современной медицине, основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне.
ДНК‑нанотехнологии ‑ используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур. Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис‑пептиды).
В начале 2000‑го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии ‑ наноплазмонике.
Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.
Робототехника
Нанороботы ‑ роботы, созданные из наноматериалов и размером сопоставимые с молекулой, обладающие функциями движения, обработки и передачи информации, исполнения программ. Нанороботы, способные к созданию своих копий, т.е. самовоспроизводству, называются репликаторами.
В настоящее время уже созданы электромеханические наноустройства, ограниченно способные к передвижению, которые можно считать прототипами нанороботов. Молекулярные роторы ‑ синтетические наноразмерные двигатели, способные генерировать крутящий момент при приложении к ним достаточного количества энергии.
Место России среди стран, разрабатывающих и производящих нанотехнологии
Мировыми лидерами по общему объему капиталовложений в сфере нанотехнологий являются страны ЕС, Япония и США. В последнее время значительно увеличили инвестиции в эту отрасль Россия, Китай, Бразилия и Индия. В России объем финансирования в рамках программы «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 ‑ 2010 годы» составит 27,7 млрд.руб.
В последнем (2008 год) отчете лондонской исследовательской фирмы Cientifica, который называется «Отчет о перспективах нанотехнологий», о российских вложениях написано дословно следующее: «Хотя ЕС по уровню вложений все еще занимает первое место, Китай и Россия уже обогнали США».
В нанотехнологиях существуют такие области, где российские ученые стали первыми в мире, получив результаты, положившие начало развитию новых научных течений.
Среди них можно выделить получение ультрадисперсных наноматериалов, проектирование одноэлектронных приборов, а также работы в области атомно‑силовой и сканирующей зондовой микроскопии. Только на специальной выставке, проводившейся в рамках XII Петербургского экономического форума (2008 год), было представлено сразу 80 конкретных разработок.
В России уже производится целый ряд нанопродуктов, востребованных на рынке: наномембраны, нанопорошки, нанотрубки. Однако, по мнению экспертов, по комммерциализации нанотехнологических разработок Россия отстает от США и других развитых стран на десять лет.
Нанотехнологии и наноматериалы
Развитие нанотехнологий и наноматериалов начинается с 1931 года, когда немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты.
Позже в 1959 году американский физик Ричард Фейнман (нобелевский лауреат по физике, 1965) впервые опубликовал работу, в которой оценивались перспективы миниатюризации под названием «Там внизу — море места».
Он заявил: «Пока мы вынуждены пользоваться атомарными структурами, которые предлагает нам природа … Но, в принципе, физик мог бы синтезировать любое вещество по заданной химической формуле».
Тогда его слова казались фантастикой, поскольку не существовало технологий, которые позволили бы оперировать отдельными атомами на атомарном же уровне (имеется в виду возможность познать отдельный атом, взять его и поставить на место). Фейнман даже назначил награду $ 1000 тому, кто практически докажет его правоту.
История развития нанотехнологии
В 1974 году японский физик Норио Танигучи ввел термин «нанотехнология», предложив описывать им механизмы размером менее одного микрона.
Немецкими физиками Гердом Бинниг и Генрихом Рорером был создан сканирующий туннельный микроскоп (СТМ), который позволил манипулировать веществом на атомарном уровне (1981 г.), Позже они получили за эту разработку Нобелевскую премию.
Сканирующий атомно-силовой (АСМ) микроскоп еще больше расширил типы исследуемых материалов (1986 г.). В 1985 году Роберт Керл, Харольд Крото, Ричард Смолли открыли новый класс соединений — фуллерены (Нобелевская премия, 1996 год).
В 1988 году независимо друг от друга французский и немецкий ученые Альберт Ферт и Петер Грюнберг открыли эффект гигантского магнетосопротивления (ГМС) (в 2007г.
присуждена Нобелевская премия по физике), после чего магнитные нанопленки и нанопровода стали использоваться для создания устройств магнитной записи. Открытие ГМС стало основой для развития спинтроники.
С 1997 года компания IBM в промышленных масштабах начала изготавливать спинтронных приборы — головки для считывания магнитной информации на основе ГМС размерами 10-100 нм. ГМС, или, иначе, гигантское магнетосопротивление (англ. giant magnetoresistance сокр., GMR) — представляет собой эффект изменения электрического сопротивления образца под действием магнитного поля (преимущественно в гетероструктурах и сверхрешетках), отличающееся от магнетосопротивления масштабом эффекта (возможно изменение сопротивления на десятки процентов, в отличие от магнетосопротивления, когда изменение сопротивления не превышает единиц процентов). Его открытие сделало возможным разработку современных носителей информации для компьютеров — накопителей на жестком магнитном диске (HDD) 1991 год ознаменовался открытием углеродных нанотрубок японским исследователем Сумио Ииджимою.
В 1998 году впервые создан транзистор на основе нанотрубок Сизом Деккером (голландский физик). А в 2004 году он соединил углеродную нанотрубку с ДНК, впервые получив полноценный наномеханизм, открыв тем самым путь к развитию бионанотехнологии.
2004 год — открытие графена, за исследования его свойств А. К. Гейму и К. С. Новоселову в 2010 г. присуждена Нобелевская премия по физике. Известные фирмы IBM, Samsung финансируют научные проекты с целью разработки новых электронных устройств, смогли бы заменить кремниевые технологии.
Общая характеристика нанотехнологий и наноматериалов
Нанотехнологии (НТ) (греческое слово «nannos» означает «карлик») — это совокупность методов манипулирования веществом на атомном или молекулярном уровне с целью получения заранее заданных свойств.
1 нанометр (нм) = 10-9 метра.
К нанотехнологиям относят технологии, обеспечивающие возможность контролируемым образом создавать и модифицировать наноматериалы, а также осуществлять их интеграцию в полноценно функционирующие системы большего масштаба. Нанотехнологии используют: атомное сообщения молекул, локальную стимуляцию химических реакций на молекулярном уровне и др. Процессы нанотехнологий подлежат законам квантовой механики.
На сегодня основными отраслями нанотехнологий являются: наноматериалы, наноинструменты, наноэлектроника, микроэлектромеханические системы и нанобиотехнологии.
Задача НТ:
- получения наноматериалов с заданной структурой и свойствами;
- применения наноматериалов по определенному назначению с учетом их структуры и свойств;
- контроль (исследования) структуры и свойств наноматериалов как в ходе их получения, так и в период их применения.
Существует два основных подхода к нанопроизводства: сверху вниз и снизу вверх . Технология сверху вниз заключается в измельчении материала, имеющего большие размеры (массивный материал), до наноразмерных частиц. При подходе снизу вверх продукты нанопроизводства создаются путем выращивания (создания) их из атомного и молекулярного масштабов.
Производство на наноуровне известно как нанопроизводств — предусматривает масштабные мероприятия, создание надежного и экономически эффективного производства наноразмерных материалов, конструкций, устройств и систем. Оно предусматривает исследования, разработки и интеграции технологий сверху вниз и более сложную — снизу вверх или процессы самоорганизации.
Наноматериалы — это дисперсные или массивные материалы (структурные элементы — зерна, кристаллиты, блоки, кластеры), геометрические размеры которых хотя бы в одном измерении не превышают 100 нм и имеющие качественно новые свойства, функциональные и эксплуатационные характеристики, которые проявляются вследствие наномасштабных размеров.
Все вещества в начальном состоянии или после определенного обработки (измельчения) имеют разную степень дисперсности, размер составляющих частиц можно не увидеть невооруженным глазом.
Объекты с размерами в пределах 1-100 нм принято считать нанообъектами , но такие ограничения являются весьма условными. При этом данные размеры могут касаться как всего образца (нанообъектом является весь образец), так и его структурных элементов (нанообъектом является его структура). Геометрические размеры некоторых веществ приведены в таблице.
Основные преимущества нанообъектов и наноматериалов состоит в том, что за малых размеров в них проявляются новые особые свойства, не характерные этим веществам в массивном состоянии.
Классификация вещества в зависимости от степени дисперсности
состояние вещества | раздробленность вещества | Степень дисперсности, см -1 | Число атомов в частице, шт. |
макроскопическое | грубодисперсная | 100 -102 | > 1018 |
Средство наблюдения: невооруженный глаз | |||
микроскопическое | тонкодисперсная | 102 -105 | > 109 |
Средство наблюдения: оптический микроскоп | |||
коллоидное | ультрадисперсных | 105 -107 | 109 -102 |
Средство наблюдения: оптический ультрамикроскоп, электронный и сканирующий зондовый микроскоп | |||
Молекулярное, атомное и ионное | Молекулярная, атомная и ионная | > 107 |